Apr 16, 2021  
2020-2021 Academic Catalog 
    
2020-2021 Academic Catalog

Biomedical Engineering, B.S.


Return to {$returnto_text} Return to: Degree Offerings

This program will prepare graduates for careers in the biomedical engineering field with a specialization in biomechanical skills. This interdisciplinary degree combines classical mechanical engineering and biological sciences. With a biomedical engineering degree, graduates are prepared to work at companies that design and manufacture medical devices including joints and tissues for the human body.

Program Objectives

  1. Our graduates will be employed in Biomedical Engineering related fields or in other career fields in industry, business, academe, government, or non-profit organizations.
  2. Our graduates will continue to enhance their professional skills by participating in professional organizations, completing additional college courses, or completing industry-sponsored short courses.

Student Learning Outcomes

Biomedical engineering graduates will successfully demonstrate the 7 ABET program outcomes:

  1. an ability to identify, formulate, and solve complex engineering problems by applying principles on engineering, science, and mathematics.
  2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors. 
  3. an ability to communicate effectively with a range of audiences.
  4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
  5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
  6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
  7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

 

The curriculum will prepare graduates with experience in:

  1. Applying principles of engineering, biology, human physiology, chemistry, calculus-based physics, mathematics (through differential equations) and statistics;
  2. Solving bio/biomedical engineering problems, including those associated with the interaction between living and non-living systems;
  3. Analyzing, modeling, designing, and realizing bio/biomedical engineering devices, systems, components, or processes; and
  4. Making measurements on and interpreting data from living systems.

Required Courses


General Education Core


Total Credits Required: 40


Biomedical Engineering Core


Total Credits Required: 89


Preparatory Core 1


Total Credits Required: 129


4-year plan


Total: 18


Total: 15


Total: 16


Total: 16


Total: 16


Total: 16


Semester VII


Total: 17


Semester VIII


Choose one of the following two courses:


Choose one of the following two courses:


Total: 15


Total Credits Required: 129


* Required for all students who plan to complete an internship.

Return to {$returnto_text} Return to: Degree Offerings